Conductive Nanosheets for Ultra-Conformable Smart Electronics
Kento Yamagishi
Graduate School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-8480 Japan
Search for more papers by this authorSilvia Taccola
Center for Micro-BioRobotics@SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025 Italy
Search for more papers by this authorShinji Takeoka
Graduate School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-8480 Japan
Search for more papers by this authorToshinori Fujie
Waseda Institute for Advanced Study, Waseda University, 1-6-1 Nishi Waseda, Shinjuku-ku, Tokyo, 169-8050 Japan
Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho Kawaguchi, Saitama, 332-0012 Japan
Search for more papers by this authorVirgilio Mattoli
Center for Micro-BioRobotics@SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025 Italy
Search for more papers by this authorFrancesco Greco
Graduate School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-8480 Japan
Center for Micro-BioRobotics@SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025 Italy
Search for more papers by this authorKento Yamagishi
Graduate School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-8480 Japan
Search for more papers by this authorSilvia Taccola
Center for Micro-BioRobotics@SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025 Italy
Search for more papers by this authorShinji Takeoka
Graduate School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-8480 Japan
Search for more papers by this authorToshinori Fujie
Waseda Institute for Advanced Study, Waseda University, 1-6-1 Nishi Waseda, Shinjuku-ku, Tokyo, 169-8050 Japan
Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho Kawaguchi, Saitama, 332-0012 Japan
Search for more papers by this authorVirgilio Mattoli
Center for Micro-BioRobotics@SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025 Italy
Search for more papers by this authorFrancesco Greco
Graduate School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-8480 Japan
Center for Micro-BioRobotics@SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025 Italy
Search for more papers by this authorKuniharu Takei
Osaka Prefecture University, Department of Physics and Electronics, 1-1 Gakuen Nakaku, Sakai, 599-8531 Osaka, Japan
Search for more papers by this authorSummary
This chapter describes the various methodologies for the preparation of single-layered and multi-layered conductive nanosheets. It highlights what kinds of physical, chemical, and electrical properties are exhibited by two-dimensional conductive polymer assemblies, and also describes how such properties can be applied or integrated into smart electronics. The chapter starts with the most simple, basic conductive nanosheets; PEDOT doped with poly(styrenesulfonate) (PEDOT:PSS) single-layered nanosheets, which were fabricated by spin-coating of a commercially available ready-to-use PEDOT:PSS aqueous dispersion. It is of crucial importance for real-world applications to extend the processing of the conductive nanosheet technologies to mass-scalable industrial film fabrication techniques. In addition to the conductive properties, PEDOT:PSS has unique electrochemical properties as ionic conductors. Owing to its twofold functionality, this conductive polymer has been used as a transducer at the biotic/abiotic interface; that is, between the wet biological world and dry electronic devices.
References
- Takei, K., Takahashi, T., Ho, J.C., Ko, H., Gillies, A.G., Leu, P.W., Fearing, R.S., and Javey, A. (2010) Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater., 9, 821.
- Wang, C., Hwang, D., Yu, Z., Takei, K., Park, J., Chen, T., Ma, B., and Javey, A. (2013) User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater., 12, 1.
- Someya, T., Sekitani, T., Iba, S., Kato, Y., Kawaguchi, H., and Sakurai, T. (2004) A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. U.S.A., 101, 9966.
- Schwartz, G., Tee, B.C.-K., Mei, J., Appleton, A.L., Kim, D.H., Wang, H., and Bao, Z. (2013) Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun., 4, 1859.
- Lipomi, D.J., Vosgueritchian, M., Tee, B.C.-K., Hellstrom, S.L., Lee, J.A., Fox, C.H., and Bao, Z. (2011) Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol., 6, 788.
- Kim, D.-H., Lu, N., Ma, R., Kim, Y.-S., Kim, R.-H., Wang, S., Wu, J., Won, S.M., Tao, H., Islam, A., Yu, K.J., Kim, T.-I., Chowdhury, R., Ying, M., Xu, L., Li, M., Chung, H.-J., Keum, H., McCormick, M., Liu, P., Zhang, Y.-W., Omenetto, F.G., Huang, Y., Coleman, T., and Rogers, J.A. (2011) Epidermal electronics. Science, 333, 838.
- Yeo, W.H., Kim, Y.S., Lee, J., Ameen, A., Shi, L., Li, M., Wang, S., Ma, R., Jin, S.H., Kang, Z., Huang, Y., and Rogers, J.A. (2013) Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater., 25, 2773.
- Son, D., Lee, J., Qiao, S., Ghaffari, R., Kim, J., Lee, J.E., Song, C., Kim, S.J., Lee, D.J., Jun, S.W., Yang, S., Park, M., Shin, J., Do, K., Lee, M., Kang, K., Hwang, C.S., Lu, N., Hyeon, T., and Kim, D.-H. (2014) Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol., 9, 397.
- Stoppa, M. and Chiolerio, A. (2014) Wearable electronics and smart textiles: a critical review. Sensors, 14, 11957.
- Takamatsu, S., Lonjaret, T., Ismailova, E., Masuda, A., Itoh, T., and Malliaras, G.G. (2016) Wearable keyboard using conducting polymer electrodes on textiles. Adv. Mater., 28, 4485.
- Il Park, S., Brenner, D.S., Shin, G., Morgan, C.D., Copits, B.A., Chung, H.U., Pullen, M.Y., Noh, K.N., Davidson, S., Oh, S.J., Yoon, J., Jang, K.-I., Samineni, V.K., Norman, M., Grajales-Reyes, J.G., Vogt, S.K., Sundaram, S.S., Wilson, K.M., Ha, J.S., Xu, R., Pan, T., Kim, T., Huang, Y., Montana, M.C., Golden, J.P., Bruchas, M.R., Gereau, R.W., and Rogers, J.A. (2015) Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotechnol., 33, 1280.
- Minev, I.R., Musienko, P., Hirsch, A., Barraud, Q., Wenger, N., Moraud, E.M., Gandar, J., Capogrosso, M., Milekovic, T., Asboth, L., Torres, R.F., Vachicouras, N., Liu, Q., Pavlova, N., Duis, S., Larmagnac, A., Vörös, J., Micera, S., Suo, Z., Courtine, G., and Lacour, S.P. (2015) Electronic dura mater for long-term multimodal neural interfaces. Science, 347, 159.
- Liu, J., Fu, T., Cheng, Z., Hong, G., Zhou, T., Jin, L., Duvvuri, M., Jiang, Z., Kruskal, P., Xie, C., Suo, Z., Fang, Y., and Lieber, C.M. (2015) Syringe-injectable electronics. Nat. Nanotechnol., 10, 629.
- Kang, S., Murphy, R.K.J., Hwang, S., Lee, S.M., Daniel, V., Shin, J., Gamble, P., Cheng, H., Yu, S., Liu, Z., Mccall, J.G., Stephen, M., Ying, H., Kim, J., Park, G., Webb, R.C., Lee, C.H., Chung, S., Wie, D.S., Gujar, A.D., Vemulapalli, B., Kim, A.H., Lee, K., Cheng, J., Huang, Y., Lee, S.H., and Paul, V. (2016) Bioresorbable silicon electronic sensors for the brain. Nature, 530, 71.
- Hwang, S., Huang, X., Seo, J., Song, J., Kim, S., Hage-Ali, S., Chung, H., Tao, H., Omenetto, F.G., Ma, Z., and Rogers, J.A. (2013) Materials for bioresorbable radio frequency electronics. Adv. Mater., 25, 3526.
- Kim, D.-H., Viventi, J., Amsden, J.J., Xiao, J., Vigeland, L., Kim, Y.-S., Blanco, J.A., Panilaitis, B., Frechette, E.S., Contreras, D., Kaplan, D.L., Omenetto, F.G., Huang, Y., Hwang, K.-C., Zakin, M.R., Litt, B., and Rogers, J.A. (2010) Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater., 9, 511.
- Yang, Y., Zhang, H., Lin, Z.H., Zhou, Y.S., Jing, Q., Su, Y., Yang, J., Chen, J., Hu, C., and Wang, Z.L. (2013) Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano, 7, 9213.
- Fan, F.R., Lin, L., Zhu, G., Wu, W., Zhang, R., and Wang, Z.L. (2012) Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett., 12, 3109.
- Tee, B.C.-K., Wang, C., Allen, R., and Bao, Z. (2012) An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol., 7, 825.
- Benight, S.J., Wang, C., Tok, J.B.H., and Bao, Z. (2013) Stretchable and self-healing polymers and devices for electronic skin. Prog. Polym. Sci., 38, 1961.
- Elschner, A., Kirchmeyer, S., Lövenich, W., Merker, U., and Reuter, K. (2011) PEDOT Principles and Applications of Intrinsically Conductive Polymer, CRS Press.
- Kirchmeyer, S. and Reuter, K. (2005) Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J. Mater. Chem., 15, 2077.
- Guimard, N.K., Gomez, N., and Schmidt, C.E. (2007) Conducting polymers in biomedical engineering. Prog. Polym. Sci., 32, 876.
- Smela, B.E. (2003) Conjugated polymer actuators for biomedical applications. Adv. Mater., 15, 481.
- Takano, T., Masunaga, H., Fujiwara, A., Okuzaki, H., and Sasaki, T. (2012) PEDOT nanocrystal in highly conductive PEDOT:PSS polymer films. Macromolecules, 45, 3859.
- Jonda, C.H., Mayer, A.B.R., and Stolz, U. (2000) Surface roughness effects and their influence on the degradation of organic light emitting devices. J. Mater. Sci., 35, 5645.
- White, M.S., Kaltenbrunner, M., Głowacki, E.D., Gutnichenko, K., Kettlgruber, G., Graz, I., Aazou, S., Ulbricht, C., Egbe, D.A.M., Miron, M.C., Major, Z., Scharber, M.C., Sekitani, T., Someya, T., Bauer, S., and Sariciftci, N.S. (2013) Ultrathin, highly flexible and stretchable PLEDs. Nat. Photonics, 7, 811.
- Khodagholy, D., Gurfinkel, M., Stavrinidou, E., Leleux, P., Herve, T., Sanaur, S., and Malliaras, G.G. (2011) High speed and high density organic electrochemical transistor arrays. Appl. Phys. Lett., 99, 99.
- Wan, A.M., Inal, S., Williams, T., Wang, K., Leleux, P., Estevez, L., Giannelis, E.P., Fischbach, C., Malliaras, G.G., and Gourdon, D. (2015) 3D conducting polymer platforms for electrical control of protein conformation and cellular functions. J. Mater. Chem. B, 3, 5040.
- Khodagholy, D., Rivnay, J., Sessolo, M., Gurfinkel, M., Leleux, P., Jimison, L.H., Stavrinidou, E., Herve, T., Sanaur, S., Owens, R.M., and Malliaras, G.G. (2013) High transconductance organic electrochemical transistors. Nat. Commun., 4, 2133.
- Khodagholy, D., Doublet, T., Quilichini, P., Gurfinkel, M., Leleux, P., Ghestem, A., Ismailova, E., Hervé, T., Sanaur, S., Bernard, C., and Malliaras, G.G. (2013) In vivo recordings of brain activity using organic transistors. Nat. Commun., 4, 1575.
- Kaltenbrunner, M., White, M.S., Głowacki, E.D., Sekitani, T., Someya, T., Sariciftci, N.S., and Bauer, S. (2012) Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun., 3, 770.
- Becker, E., Parashkov, R., Ginev, G., Schneider, D., Hartmann, S., Brunetti, F., Dobbertin, T., Metzdorf, D., Riedl, T., Johannes, H.H., and Kowalsky, W. (2003) All-organic thin-film transistors patterned by means of selective electropolymerization. Appl. Phys. Lett., 83, 4044.
- Paetzold, R., Heuser, K., Henseler, D., Roeger, S., Wittmann, G., and Winnacker, A. (2003) Performance of flexible polymeric light-emitting diodes under bending conditions. Appl. Phys. Lett., 82, 3342.
- Fujie, T., Okamura, Y., and Takeoka, S. (2007) Ubiquitous transference of a free-standing polysaccharide nanosheet with the development of a nano-adhesive plaster. Adv. Mater., 19, 3549.
- Takeoka, S., Okamura, Y., Fujie, T., and Fukui, Y. (2008) Development of biodegradable nanosheets as nanoadhesive plaster. Pure Appl. Chem., 80, 2259.
- Fujie, T. (2016) Development of free-standing polymer nanosheets for advanced medical and health-care applications. Polym. J., 48, 773.
- Fujie, T., Matsutani, N., Kinoshita, M., Okamura, Y., Saito, A., and Takeoka, S. (2009) Adhesive, flexible, and robust polysaccharide nanosheets integrated for tissue-defect repair. Adv. Funct. Mater., 19, 2560.
- Okamura, B.Y., Kabata, K., Kinoshita, M., Saitoh, D., and Takeoka, S. (2009) Free-standing biodegradable poly (lactic acid) nanosheet for sealing operations in surgery. Adv. Mater., 21, 4388.
- Miyazaki, H., Kinoshita, M., Saito, A., Fujie, T., Kabata, K., Hara, E., Ono, S., Takeoka, S., and Saitoh, D. (2012) An ultrathin poly(L-lactic acid) nanosheet as a burn wound dressing for protection against bacterial infection. Wound Repair Regen., 20, 573.
- Niwa, D., Fujie, T., Lang, T., Goda, N., and Takeoka, S. (2012) Heterofunctional nanosheet controlling cell adhesion properties by collagen coating. J. Biomater. Appl., 27, 131.
- Fujie, T., Mori, Y., Ito, S., Nishizawa, M., Bae, H., Nagai, N., Onami, H., Abe, T., Khademhosseini, A., and Kaji, H. (2014) Micropatterned polymeric nanosheets for local delivery of an engineered epithelial monolayer. Adv. Mater., 26, 1699.
- Shi, X., Fujie, T., Saito, A., Takeoka, S., Hou, Y., Shu, Y., Chen, M., Wu, H., and Khademhosseini, A. (2014) Periosteum-mimetic structures made from freestanding microgrooved nanosheets. Adv. Mater., 26, 3290.
- Fujie, T., Shi, X., Ostrovidov, S., Liang, X., Nakajima, K., Chen, Y., Wu, H., and Khademhosseini, A. (2015) Spatial coordination of cell orientation directed by nanoribbon sheets. Biomaterials, 53, 86.
- Ventrelli, L., Fujie, T., Del Turco, S., Basta, G., Mazzolai, B., and Mattoli, V. (2013) Influence of nanoparticle-embedded polymeric surfaces on cellular adhesion, proliferation , and differentiation. J. Biomed. Mater. Res. Part A, 102, 2652.
- Fujie, T., Saito, A., Kinoshita, M., Miyazaki, H., Ohtsubo, S., Saitoh, D., and Takeoka, S. (2010) Dual therapeutic action of antibiotic-loaded nanosheets for the treatment of gastrointestinal tissue defects. Biomaterials, 31, 6269.
- Kashiwagi, K., Ito, K., Haniuda, H., Ohtsubo, S., and Takeoka, S. (2013) Development of latanoprost-loaded biodegradable nanosheet as a new drug delivery system for glaucoma. Invest. Ophthalmol. Visual Sci., 54, 5629.
- Taccola, S., Desii, A., Pensabene, V., Fujie, T., Saito, A., Takeoka, S., Dario, P., Menciassi, A., and Mattoli, V. (2011) Free-standing poly(L-lactic acid) nanofilms loaded with superparamagnetic nanoparticles. Langmuir, 27, 5589.
- Greco, F., Zucca, A., Taccola, S., Menciassi, A., Fujie, T., Haniuda, H., Takeoka, S., Dario, P., and Mattoli, V. (2011) Ultra-thin conductive free-standing PEDOT/PSS nanofilms. Soft Matter, 7, 10642.
- Greco, F., Zucca, A., Taccola, S., Mazzolai, B., and Mattoli, V. (2013) Patterned free-standing conductive nanofilms for ultraconformable circuits and smart interfaces. ACS Appl. Mater. Interfaces, 5, 9461.
- Taccola, S., Greco, F., Zucca, A., Innocenti, C., De Julián Fernández, C., Campo, G., Sangregorio, C., Mazzolai, B., and Mattoli, V. (2013) Characterization of free-standing PEDOT:PSS/iron oxide nanoparticle composite thin films and application as conformable humidity sensors. ACS Appl. Mater. Interfaces, 5, 6324.
- Zucca, A., Cipriani, C., Tarantino, S., Ricci, D., Mattoli, V., and Greco, F. (2015) Tattoo conductive polymer nanosheets for skin-contact applications. Adv. Healthcare Mater., 4, 983.
- Greco, F., Mattoli, V., Dario, P., Menciassi, A., and Zucca, A. (2013) Process for the preparation of biocompatible, free-standing nanofilms of conductive polymers. International application deposited on 2011, Protocol Number PCT/IB2011/055288. WO2012070016 (Also published as US2012306114). EP2643395 A1.
- Zucca, A., Yamagishi, K., Fujie, T., Takeoka, S., Mattoli, V., and Greco, F. (2015) Roll to roll processing of ultraconformable conducting polymer nanosheets. J. Mater. Chem. C, 3, 6539.
- Stroock, A.D., Kane, R.S., Weck, M., Metallo, S.J., and Whitesides, G.M. (2003) Synthesis of free-standing quasi-two-dimensional polymers. Langmuir, 19, 2466.
- Yoshioka, Y. and Jabbour, G.E. (2007) in Conjugated Polymers: Processing and Applications (eds T.A. Skotheim and J.R. Reynolds), CRS Press, Boca Raton, FL, pp. 3-1–3-21 doi: 10.1017/CBO9781107415324.004.
- Ashizawa, S., Horikawa, R., and Okuzaki, H. (2005) Effects of solvent on carrier transport in poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate). Synth. Met., 153, 5.
- Hohnholz, D., Okuzaki, H., and MacDiarmid, A.G. (2005) Plastic electronic devices through line patterning of conducting polymers. Adv. Funct. Mater., 15, 51.
-
Murakami, T., Mori, Y., and Okuzaki, H. (2011) Effect of ethylene glycol on structure and carrier transport in highly conductive poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate). Trans. Mater. Res. Soc. Jpn, 36, 165.
10.14723/tmrsj.36.165 Google Scholar
- Kim, J.Y., Jung, J.H., Lee, D.E., and Joo, J. (2002) Enhancement of electrical conductivity by a change of solvents. Synth. Met., 126, 311.
- Louwet, F., Groenendaal, L., Dhaen, J., Manca, J., Van Luppen, J., Verdonck, E., and Leenders, L. (2003) Synthesis, characterization, properties and applications. Synth. Met., 135–136, 115.
- Ouyang, J., Xu, Q., Chu, C.W., Yang, Y., Li, G., and Shinar, J. (2004) On the mechanism of conductivity enhancement in poly(3,4- ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment. Polymer, 45, 8443.
- Jönsson, S.K.M., Birgerson, J., Crispin, X., Greczynski, G., Osikowicz, W., Denier van der Gon, A.W., Salaneck, W.R., and Fahlman, M. (2003) The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) films. Synth. Met., 139, 1.
- Wang, T., Qi, Y., Xu, J., Hu, X., and Chen, P. (2005) Effects of poly(ethylene glycol) on electrical conductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) film. Appl. Surf. Sci., 250, 188.
- Alemu Mengistie, D., Wang, P.-C., and Chu, C.-W. (2013) Effect of molecular weight of additives on the conductivity of PEDOT:PSS and efficiency for ITO-free organic solar cells. J. Mater. Chem. A, 1, 9907.
- Badre, C., Marquant, L., Alsayed, A.M., and Hough, L.A. (2012) Highly conductive poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) films using 1-ethyl-3-methylimidazolium tetracyanoborate ionic liquid. Adv. Funct. Mater., 22, 2723.
- Onishi, K. and Nakajima, S. (2010) Enhancement of conductivity on PEDOT/salt hybrid films. IEEJ Trans. Fundam. Mater., 130, 217.
-
Fan, W., Kinnunen, T., Niinimäki, A., and Hannuksela, M. (1991) Skin reactions to glycols used in dermatological and cosmetic vehicles. Am. J. Contact Dermat., 2, 181.
10.1097/01634989-199109000-00005 Google Scholar
- Delongchamp, D.M., Vogt, B.D., Brooks, C.M., Kano, K., Obrzut, J., Richter, C.A., Kirillov, O.A., and Lin, E.K. (2005) Influence of a water rinse on the structure and properties of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) films. Langmuir, 21, 11480.
- Higgins, A.M., Martin, S.J., Jukes, P.C., Geoghegan, M., Jones, A.L., Langridge, S., Cubitt, R., Kirchmeyer, S., Ox, U.K., Laue-langevin, I., Horowitz, J., and Cedex, F.-G. (2003) Interfacial structure in semiconducting polymer devices. J. Mater. Chem., 13, 2814.
- Jukes, P.C., Martin, S.J., Higgins, A.M., Geoghegan, M., Jones, R.A.L., Langridge, S., Wehrum, A., and Kirchmeyer, S. (2004) Controlling the surface composition poly (styrene sulfonate) blends by heat treatment. Adv. Mater., 16, 807.
- Crispin, X., Marciniak, S., Osikowicz, W., Zotti, G., Danier van der Gon, A.W., Louwet, F., Fahlman, M., Groenendaal, L., De Schryver, F., and Salaneck, W.R. (2003) Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)–poly(styrene sulfonate): a photoelectron spectroscopy study. J. Polym. Sci., Part B: Polym. Phys., 41, 2561.
- Okuzaki, H. and Ishihara, M. (2003) Spinning and characterization of conducting microfibers. Macromol. Rapid Commun., 24, 261.
- Okuzaki, H., Suzuki, H., and Ito, T. (2009) Electrically driven PEDOT/PSS actuators. Synth. Met., 159, 2233.
- Lang, U., Naujoks, N., and Dual, J. (2009) Mechanical characterization of PEDOT:PSS thin films. Synth. Met., 159, 473.
- Stafford, C.M., Harrison, C., Beers, K.L., Karim, A., Amis, E.J., VanLandingham, M.R., Kim, H.-C., Volksen, W., Miller, R.D., and Simonyi, E.E. (2004) A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat. Mater., 3, 545.
- Nolte, A.J., Cohen, R.E., and Rubner, M.F. (2006) A two-plate buckling technique for thin film modulus measurements: Applications to poly electrolyte multilayers. Macromolecules, 39, 4841.
- Fujie, T., Kawamoto, Y., Haniuda, H., Saito, A., Kabata, K., Honda, Y., Ohmori, E., Asahi, T., and Takeoka, S. (2013) Selective molecular permeability induced by glass transition dynamics of semicrystalline polymer ultrathin films. Macromolecules, 46, 395.
- Baba, S., Midorikawa, T., and Nakano, T. (1999) Unambiguous detection of the adhesion failure of metal films in the MST by waveform analysis of the friction signal. Appl. Surf. Sci., 144–145, 344.
- Persson, K.M., Karlsson, R., Svennersten, K., Löffler, S., Jager, E.W.H., Richter-Dahlfors, A., Konradsson, P., and Berggren, M. (2011) Electronic control of cell detachment using a self-doped conducting polymer. Adv. Mater., 23, 4403.
- Nilsson, D., Robinson, N.D., Isaksson, J., All, P.K.J., Berggren, M., and Richter-dahlfors, A. (2007) Electronic control of Ca2+ signalling in neuronal cells using an organic electronic ion pump. Nat. Mater., 6, 673.
- Berggren, M. and Richter-Dahlfors, A. (2007) Organic bioelectronics. Adv. Mater., 19, 3201.
- Wan, A.M.D., Schur, R.M., Ober, C.K., Fischbach, C., Gourdon, D., and Malliaras, G.G. (2012) Electrical control of protein conformation. Adv. Mater., 24, 2501.
- Saltó, C., Saindon, E., Bolin, M., Kanciurzewska, A., Fahlman, M., Jager, E.W.H., Tengvall, P., Arenas, E., and Berggren, M. (2008) Control of neural stem cell adhesion and density by an electronic polymer surface switch. Langmuir, 24, 14133.
- Herrmann, F. and Mandol, L. (1955) Studies of pH of sweat produced by different forms of stimulation. J. Invest. Dermatol., 24, 225.
- Huang, J., Miller, P.F., Wilson, J.S., De Mello, A.J., De Mello, J.C., and Bradley, D.D.C. (2005) Investigation of the effects of doping and post-deposition treatments on the conductivity, morphology, and work function of poly(3,4- ethylenedioxythiophene)/poly(styrene sulfonate) films. Adv. Funct. Mater., 15, 290.
- De Kok, M.M., Buechel, M., Vulto, S.I.E., Van De Weyer, P., Meulenkamp, E.A., De Winter, S.H.P.M., Mank, A.J.G., Vorstenbosch, H.J.M., Weijtens, C.H.L., and Van Elsbergen, V. (2004) Modification of PEDOT:PSS as hole injection layer in polymer LEDs. Phys. Status Solidi A, 201, 1342.
- Kawano, K., Pacios, R., Poplavskyy, D., Nelson, J., Bradley, D.D.C., and Durrant, J.R. (2006) Degradation of organic solar cells due to air exposure. Sol. Energy Mater. Sol. Cells, 90, 3520.
- Daoud, W.A., Xin, J.H., and Szeto, Y.S. (2005) Polyethylenedioxythiophene coatings for humidity, temperature and strain sensing polyamide fibers. Sens. Actuators, B, 109, 329.
- Liu, J., Agarwal, M., Varahramyan, K., Berney, E.S. IV and Hodo, W.D. (2008) Polymer-based microsensor for soil moisture measurement. Sens. Actuators, B, 129, 599.
- Taccola, S., Greco, F., Sinibaldi, E., Mondini, A., Mazzolai, B., and Mattoli, V. (2015) Toward a new generation of electrically controllable hygromorphic soft actuators. Adv. Mater., 27, 1668.
- Taccola, S., Greco, F., Mazzolai, B., Mattoli, V., and Jager, E.W.H. (2013) Thin film free-standing PEDOT: PSS / SU8 bilayer microactuators. J. Micromech. Microeng., 23, 117004.